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Abstract  454 

Pubertal timing varies considerably and has been associated with a range of health 455 
outcomes in later life. To elucidate the underlying biological mechanisms, we 456 
performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 457 
independent signals associated with age at menarche. Collectively these loci 458 
explained 11% of the trait variance in an independent sample, with women at the top 459 
and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed 460 
and precocious pubertal development, respectively. These common variant analyses 461 
were supported by exome sequence analysis of ~220,000 women, identifying several 462 
genes, including rare loss of function variants in ZNF483 which abolished the impact 463 
of polygenic risk. Next, we implicated 660 genes in pubertal development using a 464 
combination of in silico variant-to-gene mapping approaches and integration with 465 
dynamic gene expression data from mouse embryonic GnRH neurons. This included 466 
an uncharacterized G-protein coupled receptor GPR83, which we demonstrate 467 
amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified 468 
several genes, including ovary-expressed genes involved in DNA damage response 469 
that co-localize with signals associated with menopause timing, leading us to 470 
hypothesize that the ovarian reserve might signal centrally to trigger puberty. 471 
Collectively these findings extend our understanding of the biological complexity of 472 
puberty timing and highlight body size dependent and independent mechanisms that 473 
potentially link reproductive timing to later life disease.  474 
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Introduction 475 

Age at menarche (AAM), the onset of menses in females, represents the start of 476 
reproductive maturity and is a widely reported marker of pubertal timing. Menarche 477 
normally occurs between ages 10 to 15 years1, and its variation is associated with risks 478 
of several health outcomes, including obesity, type 2 diabetes (T2D), cardiovascular 479 
disease, and hormone-sensitive cancers2,3,4,5,6. Thus, widespread secular trends 480 
towards earlier puberty timing may have an important impact on public health7. AAM 481 
is a highly polygenic trait8 and previous genome-wide association studies (GWAS) 482 
have identified ~400 common genetic loci9,10,11,12,13, the vast majority of which were 483 
discovered in samples of European ancestry. AAM has a strong genetic correlation 484 
with male puberty timing (Rg=0.68)14, as well as with adiposity (BMI, Rg=-0.35)9 and 485 
specific pathways have been identified that link nutrient sensing to reproductive 486 
hormone axis activation. For example, we recently reported that MC3R is the key 487 
hypothalamic sensor linking nutritional status to puberty timing15. 488 

Previously reported GWAS signals in ∼370,000 women of European ancestry 489 
explained ~7.4% of the population variance in AAM, corresponding to ∼25% of the 490 
estimated heritability9. Here, through an expanded GWAS in up to 799,845 women, 491 
including 166,890 of East Asian ancestry, we identify 1080 independent signals for 492 
AAM. Female participants who carry an excess of these alleles have equivalent risk of 493 
precocious or delayed puberty compared to those carrying clinically relevant 494 
monogenic alleles. We complement these common variant analyses by undertaking 495 
the first large-scale assessment of rare variation in puberty timing in 222,283 women 496 
with exome sequence data. Through subsequent variant to gene mapping approaches, 497 
we implicate 660 genes, which collectively shed further light on the biological 498 
determinants of puberty timing and the mechanisms linking it to disease risks. 499 

Results 500 

We performed a GWAS meta-analysis for AAM, in up to 799,845 women, by 501 
combining data from five strata: i) 38 ReproGen consortium cohorts (N=180,269), ii) 502 
UK Biobank (N=238,040), iii) the Breast Cancer Association Consortium and the 503 
Ovarian Cancer Association Consortium (N=137,815), iv) 23andMe, Inc. (N=76,831), 504 
and v) three East Asian biobanks: the China Kadoorie Biobank, the Biobank Japan, 505 
and the Korean Genome and Epidemiology Study (N=166,890). All studies provided 506 
GWAS data imputed to at least 1000 Genomes reference panel density 507 
(Supplementary Table 1), yielding a total of ~12.7 million genetic variants in the final 508 
meta-analysis. We did not find evidence of test statistic inflation due to population 509 
structure (LDSC intercept=1.07, SE=0.03). 510 

To maximise the discovery of genomic signals for AAM, we used a combination of 511 
distance-based clumping and approximate conditional analysis (see Methods) in the 512 
European-strata meta-analysis and in the all-ancestry meta-analysis, to identify signals 513 
that are homogenous across the two ancestry groups. European-strata identified 514 
signals (N=935) were supplemented with additional signals from the all-ancestry 515 
analysis (N=145), resulting in a total of 1080 statistically independent signals for AAM 516 
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at a genome-wide significance (P<5x10-8, Figure 1, Supplementary Table 2). Effect 517 
sizes ranged from 3.5 months/allele for rarer alleles (MAF=0.9%) to ~5 days/allele for 518 
more common variants (Supplementary Figure 1). Across the 145 additional signals, 519 
we observed a median 1.16-fold increase in χ2 for their association with AAM in the all-520 
ancestry analysis compared to European-only, which is proportionate to the added 521 
number of East-Asian samples (~21% of the total).  522 

Independent replication data from the Danish Blood Donors study (N=35,467) 523 
(Supplementary Table 3) was available for 969/1080 signals16. Of these, 862 showed 524 
directionally concordant associations (89%, PBinomial=2.9×10-147). In this independent 525 
sample, the variance explained in AAM doubled from 5.6% for 355 available previously 526 
reported signals9 to 11% for the 969 signals with available data. We also sought 527 
indirect confirmation of AAM signals by association with age at voice breaking (AVB) 528 
in men from the UK Biobank study (N=191,235) and 23andMe (N=55,871) 529 
(Supplementary Table 4)17,18,14. Of the 1080 AAM signals, 909/1080 (84%, 530 
PBinomial=2.6×10-122) showed directionally concordant associations with AVB in UK 531 
Biobank (including 354 at P<0.05). Similarly, 852/1067 (79%, PBinomial=1.8×10-90) AAM 532 
signals available in 23andMe showed directionally concordant associations with AVB 533 
(217 at P<0.05).  534 

Exome sequence analyses identify novel rare variants of large effect 535 

Previous genetic studies for AAM have largely been restricted to assessing the role of 536 
common, largely non-coding, genetic variation. We sought to address this, by 537 
performing an exome-wide association study (ExWAS) in 222,283 European ancestry 538 
women in UK Biobank. Gene burden tests were performed by collapsing rare variants 539 
(MAF<0.1%) in each gene according to two overlapping predicted functional 540 
categories: i) high-confidence protein truncating variants (PTVs) and ii) PTVs plus 541 
missense variants with CADD score19 ³25 (termed ‘damaging variants’, DMG). Six 542 
genes were associated with AAM at exome-wide significance (P<1.54×10-6, 543 
0.05/32,434 tests, Figure 2, Supplementary Figure 2, Supplementary Figure 3, 544 
Supplementary Figure 4, Supplementary Table 5). This included two genes previously 545 
reported in rare monogenic disorders of puberty: TACR3 (beta=0.62 years, P=3.2×10-546 
19, N=489 DMG carriers) previously implicated in normosmic idiopathic 547 
hypogonadotropic hypogonadism (IHH)20, and MKRN3 (beta=-0.59 years, P=1.4×10-548 
7, N=187 DMG carriers) previously implicated in familial central precocious puberty 549 
(CPP)21. Furthermore, MC3R (beta=0.33 years, P=1.6×10-9, N=796 DMG carriers) 550 
was recently reported to link nutrient sensing to key hypothalamic neurons15.  551 

Of the three novel genes, KDM4C (beta=-0.33 years, P=2.5×10-7, N=582 DMG 552 
carriers) encodes a lysine-specific histone demethylase likely involved in 553 
epigenetically regulating hypothalamic-pituitary-gonadal (HPG) axis genes22. A 554 
second gene in this small family (KDM5B) showed near exome-wide significant 555 
association with AAM (P=2.6×10-6). In addition, PDE10A (beta=0.58 years, P=1.2×10-556 
7, N=196 DMG carriers) encodes phosphodiesterase 10A, which regulates the 557 
intracellular concentration of cyclic nucleotides and hence signal transduction23. 558 
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Finally, ZNF483 (beta=1.31 years, P=4.9×10-11, N=59 DMG carriers), encodes a zinc 559 
finger protein transcription factor involved in neuronal differentiation24 and self-renewal 560 
of pluripotent stem cells25.  561 

We were able to confirm four of these seven genes (KDM4C, MC3R, TACR3 and 562 
ZNF483) using voice breaking data in 178,625 men with exome sequence data in UK 563 
Biobank (P<0.05, Figure 2, Supplementary Table 5). Lack of association with AVB at 564 
MKRN3 is consistent with previous reports that rare MKRN3 mutations have greater 565 
clinical impact in girls than boys21,26. None of the seven genes showed an association 566 
with childhood or adult adiposity (Supplementary Table 6). 567 

In addition, we specifically examined rare variant associations with AAM or VB for 568 
ANOS1, CHD7, FGF8 and WDR11, which are clinically tested in hypogonadotropic 569 
hypogonadism (‘high evidence genes’ on the Genomics England IHH panel27) and 570 
show a dominant or X-linked mode of inheritance (Supplementary Table 7). Normal 571 
puberty timing (AAM: 10-15 years1 or VB: “about average”) was reported by all carriers 572 
of PTVs in ANOS1 (N=5 male) and CHD7 (N=5 female, N=1 male). PTVs in WDR11 573 
showed no association with delayed puberty with only 7/81 female and 5/68 male 574 
carriers reporting delayed puberty. Female carriers of PTVs in FGF8 showed some 575 
evidence of later puberty (beta=1.4 years, P=3.6×10-3, N=5/10 reported delayed 576 
puberty) but with no effect in males (N=1/8 reported delayed puberty) (Supplementary 577 
Figure 5). These observations highlight the lower penetrance of rare deleterious 578 
variants in large population-based studies compared to in patient cohorts28, 29,30. 579 

Common genetic variants influence risk of phenotypic extremes 580 

Rare pathogenic variants such as the above are described to cause disorders of 581 
puberty. However, it remains unclear whether common genetic variants also contribute 582 
to abnormal puberty timing. To assess this, we generated a polygenic score (PGS) of 583 
AAM in a penalised regression framework using lassosum31 and data from our meta-584 
analysis of European ancestry cohorts but excluding UK Biobank. This PGS explained 585 
~12% of the phenotypic variance in UK Biobank. The PGS was informative in 586 
individuals experiencing menarche as early as 8 years old and later than 20, well 587 
beyond the normal AAM range (10 to 15 years, Supplementary Figure 6, 588 
Supplementary Tables 8 and 9). 589 

We next sought to understand how the risks of early (<10 years) and delayed (>15 590 
years) AAM were influenced by the PGS. Women in the lowest 1% PGS centile 591 
reported AAM at mean (SE) 11.49 (0.03) years, compared to 14.46 (0.04) years in the 592 
top 1% PGS centile (Supplementary Figure 6, Supplementary Table 10). Compared 593 
to women in the 50th PGS centile, those in the top 1% PGS were 10.7 times more likely 594 
to report late AAM (OR [8.20-13.96], P=2.6x10-68), while women in the lowest 1% PGS 595 
were 14.2 times more likely to report early AAM (OR [7.13-28.39], P=5.1x10-14). 596 
Collectively these findings suggest that common genetic variants contribute to the risk 597 
of rare clinical disorders of extremely early (precocious) and delayed puberty. 598 
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To evaluate the predictive performance of our AAM signals, we compared these to 599 
phenotypic predictors in 3,140 female children from the ALSPAC study. The AAM 600 
signals in combination explained more variance in AAM than childhood BMI, parental 601 
BMI or mother’s AAM (Supplementary Table 11). Furthermore, they had a similar 602 
ability to predict extremes of AAM (beyond 2 SD) than a multi-phenotype predictor 603 
(Supplementary Figure 7), and a combined genotype and phenotype model showed 604 
high predictive ability for early AAM (AUROC = 0.75 [95% CI 0.68-0.82]) and late AAM 605 
(AUROC = 0.85 [95% CI 0.81-0.92]). 606 

We next tested whether carrying rare variants in the AAM ExWAS genes modifies the 607 
common polygenic influence on AAM. We saw that the effect of the common variant 608 
PGS on AAM was attenuated in the 49 unrelated carriers of DMG variants in ZNF483 609 
(betanon-carriers=0.564 years/SD, SE=0.003; betacarriers=0.084, SE=0.214; 610 
Pinteraction=0.025, Figure 3, Supplementary Table 12). To confirm that this was not a 611 
reflection of reduced power due to the low number of carriers, we estimated the 612 
expected relationship for non-carriers in 10,000 random subsamples of 49 participants 613 
and found that the observed carrier effect was unlikely by chance (P=0.015, 614 
Supplementary Figure 8).  615 

Using ENCODE ChIP-seq data32, we found that the transcriptional targets of ZNF483 616 
are enriched for in the AAM GWAS (fGWAS32; P=2.6×10-7), and that greater ZNF483 617 
binding confers earlier AAM (SLDP33; Z=-4.9, P=4.8×10-7), which is directionally-618 
concordant with our observed effect of rare DMG variants on later AAM. This was 619 
further corroborated by functional-domain-specific gene burden analyses, which 620 
showed a larger effect on AAM of ZNF483 DMG variants located within zinc finger 621 
domains (beta=1.615 years, SE=0.293, P=3.59×10-8), rather than DMG variants 622 
outwith these domains (beta=0.816 years, SE=0.298, P=6.2×10-3, Figure 3). This data 623 
suggests that rare DMG variants in ZNF483 confer later AAM by disrupting the 624 
protein’s ability to bind to its multiple DNA targets.  625 

Implicating AAM genes through variant to gene mapping approaches 626 

To implicate putatively causal genes that underlie our 1080 common variant signals for 627 
AAM, we developed the framework ‘GWAS to Genes’ (G2G) that integrates genomic 628 
and functional data across six sources (Methods, Figure 1, Supplementary Tables 13-629 
16). We identified proximal genes (within 500kb up or downstream) to the 1080 AAM 630 
signals and scored genes based on the degree of evidence linking our lead index 631 
variants to the function of these genes. To achieve this, we implicated genes by 632 
identifying signals that co-localised with a) known enhancers and regulatory 633 
elements34, b) non-synonymous variants, c) expression quantitative trait loci (eQTL) 634 
specifically in tissues enriched for AAM associations (Supplementary Figure 9, 635 
Supplementary Table 17), and d) circulating protein QTL (pQTL) from whole blood (see 636 
Methods). In addition, we integrated gene-level associations for aggregated non-637 
synonymous common variants using MAGMA35 and gene scores from PoPs36, which 638 
uses bulk human and mouse data with information on scRNA, gene pathways and 639 
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protein interactions to link genes to GWAS signals. Individual genes were further 640 
upweighted if they were the nearest gene to the signal37,38. 641 

Using this approach, our 1080 signals were found to be proximal to 10,341 genes, of 642 
which 660 ‘high-confidence AAM genes’ were identified as the highest-scoring gene at 643 
a locus and with at least two lines of evidence (Supplementary Figure 10 & 644 
Supplementary Table 18; top-scoring genes at each of the 1080 loci are also listed in 645 
Supplementary Table 19). High-confidence AAM genes include established 646 
components of the HPG axis that are disrupted in rare monogenic disorders of puberty 647 
(CADM1, CHD4, CHD7, FEZF1, GNRH1, KISS1, SPRY4, TAC3, TACR3, TYRO3)39, 648 
and other recently reported candidate genes (PLEKHA5, TBX3, ZNF462)40,41. Other 649 
AAM genes have recognised roles in sex hormone secretion and gametogenesis 650 
(ACVR2A, CYP19A1, HSD17B7, INHBA, INHBB, MC3R, PCSK2)42, are disrupted in 651 
rare monogenic disorders of multiple pituitary hormone deficiency (OTX2, SOX2, 652 
SOX3, SST)43, monogenic obesity (BDNF, LEPR, MC4R, NTRK2, PCSK1, SH2B1)44 653 
or syndromes characterised by hypogonadism (Noonan Syndrome: BRAF, SOS1; 654 
Bardet-Biedl Syndrome: BBS4; Prader-Willi/Angelman Syndrome: NDN, SNRPN, 655 
UBE3A)45,46,47,48. Other mechanisms implicated by high-confidence AAM genes 656 
include: insulin and insulin-like growth factor (IGF) signalling (CALCR, GHR, IGF1R, 657 
INSR, NEUROD1, NSMCE2, PAPPA2, SOCS2)49; thyroid hormone signalling 658 
(THRB)50; and the Polycomb silencing complex (CBX4, CTBP2, FBRSL1, JARID2, 659 
PHC2, SCMH1, TNRC6A)51. We also found strong supportive evidence for all genes 660 
identified by the exome variant associations, except KDM5B (Supplementary Figure 661 
11). 662 

Weight gain related and unrelated puberty signals 663 

Phenotypic, genetic and mechanistic links between higher BMI and earlier AAM are 664 
well described15, but it is challenging to distinguish whether individual AAM signals 665 
have a primary effect on puberty or weight status9. Here, 83 out of the 1080 AAM 666 
signals colocalised (at PP>=0.5) and also showed genome-wide significant 667 
association with adult BMI (Supplementary Table 20), and 53 further AAM signals 668 
colocalised with adult BMI and showed association with BMI at P<4.6×10-5 (based on 669 
1080 tests). Of these 136 colocalising signals, at 126 the AAM-reducing allele was 670 
associated with higher adult BMI (Supplementary Table 20). 671 

To identify AAM signals with or without a primary effect on early weight gain, we 672 
clustered the 1080 AAM signals by their associations with body weight from birth to 673 
age 8 years (before the normal age at puberty onset) in the Norwegian MoBa Cohort 674 
(N=26,681 children)52. We identified three trajectories: 464 AAM signals (44%) formed 675 
a ‘moderate early weight gain’ trajectory, and 15 (1%) formed a ‘high early weight gain’ 676 
trajectory; both trajectories were characterised by effects of AAM-reducing alleles on 677 
higher weight gain across early childhood. The remaining 586 (55%) AAM signals 678 
formed a ‘no early weight gain’ trajectory; yet in combination AAM-reducing alleles in 679 
this trajectory increased adult BMI (beta=0.487 kg/m2/year; P=1.6×10-20) 680 
(Supplementary Tables 21 and 22, Figure 4, Supplementary Figure 12). This data 681 
indicates a bidirectional causal relationship between AAM and body size, with greater 682 
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early weight gain leading to earlier AAM, and also earlier AAM leading to higher adult 683 
BMI. This approach provides a clear distinction between AAM signals that have 684 
primary effects on puberty timing or early weight gain. 685 

Pathway, tissue and cell-type enrichment of menarche-implicated genes  686 

Genome-wide common variant AAM associations were enriched for genes expressed 687 
in several brain regions, and enrichment was highest in the hypothalamus. Outside the 688 
brain, we also observed enrichment for genes expressed in the adrenal gland 689 
(Supplementary Figure 9 & Supplementary Table 17). 690 

We next performed gene-based pathway analyses on the 660 high-confidence AAM 691 
genes using g:Profiler53 and identified 83 enriched biological pathways 692 
(Supplementary Table 23), which grouped into 24 clusters (Figure 4, Supplementary 693 
Figure 13, Supplementary Table 24). These included a number of neuro-endocrine, 694 
sexual development, protein and chromatin regulation pathways. To explore distinct 695 
biological pathways by early weight trajectories, we repeated the gene-based 696 
pathways analysis after stratifying the 660 high-confidence AAM genes into ‘early 697 
weight gain’ AAM genes (N=341) or ‘no early weight gain’ AAM genes (N=315) 698 
(Supplementary Table 25). Early weight gain AAM genes specifically highlighted 699 
hormone regulation, feeding behaviour, rhythmical process, AKT phosphorylation 700 
targets and peptidyl-serine modification (Supplementary Figure 14, Supplementary 701 
Table 26). Conversely, the no early weight gain AAM genes highlighted female sex 702 
differentiation, histone modification, negative regulation of transcription by RNA 703 
polymerase II, synapse organisation and DNA repair (Supplementary Figure 15, 704 
Supplementary Table 26). Head development and cellular response to stress 705 
pathways were enriched among both early weight AAM gene groups (Figure 4, 706 
Supplementary Figures 13-15, Supplementary Table 26). 707 

To understand how AAM-associated genes may exert effects on the HPG axis, we 708 
explored their expressional dynamics in mouse embryonic GnRH neurons [manuscript 709 
in preparation]. RNAseq in GnRH neurons previously identified 2182 genes that 710 
showed differential expression between embryonic migration stages (early, 711 
intermediate or late, Figure 5), and were categorised into 23 spatio-temporal 712 
expression trajectories [manuscript in preparation]. At the genome-wide level, we 713 
observed enrichment for GWAS AAM associations among genes that become 714 
upregulated in the late (Trajectory01, Padj.=3.8×10-5) and mid- to late-stages of GnRH 715 
neuron development (Trajectory03, Padj.=0.032, Supplementary Table 27), i.e. when 716 
GnRH neurons have completed their migration process and start to make synaptic 717 
connections. Of the 660 high-confidence AAM genes, 28 assign to Trajectory01 718 
(PExact=2.3×10-6), including NEGR1 and TNRC6A, and 31 assign to Trajectory03 719 
(PExact=5.2×10-3), including KDM4C, PDE10A and TP53BP1. Both of these GnRH 720 
expressional trajectories remained enriched when considering only the subset of non-721 
early weight high-confidence AAM genes (Trajectory01    PExact=5.4×10-4; Trajectory03 722 
PExact=1.4×10-2), while Trajectory01 was also enriched when considering only AAM 723 
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genes that influence early weight gain (Trajectory01 PExact=9.3×10-4; Trajectory03 724 
PExact=0.08). 725 

GPCRs and puberty timing 726 

G protein-coupled receptors (GPCRs) regulate several endocrine processes and 727 
diseases, including puberty timing54 and are therapeutic targets. Here, 24 of the 161 728 
brain-expressed GPCRs (Methods) were implicated in AAM by at least one G2G 729 
predictor (Figure 6, Supplementary Table 28). These include MC3R, where we 730 
recently reported that rare LOF variants, which impair signalling, were associated with 731 
delayed puberty15, and GPR83 which encodes a Gαq11- and Gαi-coupled GPCR widely 732 
expressed in several brain regions55,56 and is implicated in energy metabolism57. In 733 
mice, Gpr83 and Mc3r are reportedly co-expressed in key hypothalamic neurons that 734 
control reproduction (KNDy neurons) and growth (GHRH neurons)15. 735 

Since dimerisation between GPCRs may affect their signalling58, we tested for physical 736 
and functional interactions between MC3R and GPR83 in vitro. Using a 737 
Bioluminescence Resonance Energy Transfer (BRET)-based assay in HEK293 cells, 738 
we observed a physical and specific interaction between GPR83 and MC3R 739 
(Supplementary Figure 16, Supplementary Table 29). We then tested whether GPR83 740 
modifies canonical MC3R signalling, by measuring NDP-a-melanocyte-stimulating 741 
hormone (NDP-aMSH)-stimulated cyclic AMP production in HEK293 cells following 742 
transfection with plasmids encoding wild-type GPR83 and MC3R separately or 743 
together (1:1 ratio). GPR83 and MC3R co-transfection increased cAMP production by 744 
43% compared to MC3R alone (P=0.03, Figure 6, Supplementary Figure 16, 745 
Supplementary Tables 30 and 31). 746 

Consistent with this in vitro interaction, we observed statistical genetic epistasis 747 
between the common AAM signals at MC3R rs3746619; a 5’UTR SNP highly 748 
correlated with predicted deleterious coding variants, and GPR83 rs592068; which 749 
colocalises with eQTLs for GPR83 in brain59 and across tissues60. Among white 750 
European unrelated UK Biobank female participants, MC3R function-increasing 751 
alleles conferred increasingly earlier AAM in the presence of GPR83 expression-752 
increasing alleles (betainteraction=-0.034 ± 0.015 years, Pinteraction=0.02, Figure 6). These 753 
findings extend our previous observation that MC3R loss of function causes delayed 754 
puberty15, by indicating that increased MC3R function through enhanced GPR83 755 
expression leads to earlier puberty timing. 756 

Joint regulation of ages at menarche and menopause 757 

Previous GWASs have estimated a modest shared genetic aetiology between AAM 758 
and age at natural menopause (ANM) (genome-wide genetic correlation: rg=0.14; 759 
P=0.003)61. ANM gene candidates are mainly expressed in the ovary and implicate 760 
DNA damage sensing and repair (DDR) processes that maintain genome stability and 761 
hence preserve the ovarian primordial follicle pool62. 762 

Of the 1080 AAM signals, nine colocalised (at PP>=0.5) and showed genome-wide 763 
significant (P<5×10-8) association with ANM, and a further 11 AAM signals colocalised 764 
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and showed association with ANM at P<4.6×10--5 (=0.05/1080, Supplementary Table 765 
32). We also considered if ANM signals influence AAM. Of the 290 previously reported 766 
ANM signals62, 21 colocalised and showed association with AAM at P<1.7×10-4 767 
(=0.05/290), 13 of which were additional to the above AAM signals (Supplementary 768 
Table 33). Consistent with the phenotypic association between AAM and ANM63, most 769 
of the shared common signals (25/33) showed directionally-concordant effects on AAM 770 
and ANM (shifting reproductive lifespan earlier or later). Several of these shared 771 
signals map to components of the HPG axis, including GNRH1, INHBB and FSHB 772 
(lead SNP rs11031006), which has previously reported associations with related 773 
reproductive phenotypes8,64,65. 774 

Several other shared AAM and ANM signals map to genes that encode components 775 
of DDR processes (CHD4, CHEK2, DEPTOR, E2F1, MSH6, MSI2, PPARG, RAD18, 776 
RAD51, RAD52, SCAI, SPRY4, SUMO1, TP53BP1, TRIP12, and WWOX, see 777 
Supplementary Table 34), central to the establishment and maintenance of ovarian 778 
oocyte numbers62, and not previously implicated in puberty timing. A notable example 779 
is rs746979919 (PAAM=1.5×10-20; PANM=1.5×10-34), which is intronic in MSH6, a DNA 780 
mismatch repair gene that is primarily expressed in peripheral reproductive tissues, 781 
such as ovary and uterus (Supplementary Table 35). Furthermore, the co-localised 782 
ANM signal at CHEK2 captures the previously described frameshift variant 783 
1100delC66. This association was further supported by the exome data, with the 347 784 
women carrying rare CHEK2 protein truncating variants (excluding 1100delC) 785 
reporting on average 2 months later AAM (SE=0.99, P=0.04). CHEK2 encodes a cell 786 
cycle checkpoint inhibitor that plays a crucial role in culling oocytes with unrepaired 787 
DNA damage62.  788 

Three of the shared AAM and ANM signals that map to DDR genes were assigned to 789 
the ‘moderate early weight gain’ trajectory and further colocalised with adult BMI 790 
(RAD52: PBMI=4.8×10-22, TP53BP1: PBMI=1.2×10--5 and TRIP12: PBMI=2.9×10-13), 791 
suggesting that some DDR genes might influence AAM via early weight gain 792 
(Supplementary Table 20). Other shared AAM and ANM signals that map to DDR 793 
genes were assigned to the ‘no early weight gain’ trajectory (CHD4, MSH6, SCAI and 794 
SUMO1) and/or showed no association (P>0.05) with adult BMI (CHEK2, MSI2, 795 
PPARG, and WWOX).  796 
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Summary and conclusions 797 

The GWAS signals identified by this expanded multi-ancestry GWAS double the 798 
variance explained in AAM compared to previous findings9. Furthermore, the common 799 
variant PGS contributes substantially to risks of extremely early and late puberty 800 
timing. Future studies should explore the potential of this PGS to predict extreme 801 
disorders of puberty timing, in contrast to the effects of known monogenic causes. 802 

We describe the first systematic characterisation of common genetic determinants of 803 
both ends of reproductive lifespan, AAM and ANM. The 33 identified shared signals 804 
highlight the concordant effects of HPG axis genes on both AAM and ANM, and also 805 
the influence of ovary-expressed genes involved in DNA damage response. DDR 806 
processes have been well described to regulate ovarian oocyte numbers throughout 807 
life62, but have not previously been implicated in puberty timing. When stratified by 808 
their effects on early childhood weight, DDR pathways were enriched among AAM 809 
genes that do not show a primary effect on early weight gain. Our findings suggest 810 
that the ovarian reserve, established during early fetal development, might signal 811 
centrally to influence the timing of puberty. 812 

We address the considerable challenge of deriving biological insights from common 813 
variant signals67 by developing G2G (GWAS to Genes), an analytical pipeline that 814 
integrates a variety of data sources to enable gene prioritisation. While comprehensive 815 
experimental validation of G2G is infeasible, its utility is supported by the prioritisation 816 
from GWAS AAM data of many genes with known involvement in sex hormone 817 
regulation and rare monogenic or syndromic disorders of puberty, obesity and 818 
hormone function. The validity of G2G prioritised genes is also supported by evidence 819 
for their enrichment for dynamic expression in GnRH neurons during their late stage 820 
of embryonic migration, when they begin their integration into the hypothalamic neural 821 
network controlling puberty68. Furthermore, we provide experimental support for one 822 
novel high-scoring AAM gene, GPR83, which is co-expressed with, interacts with, and 823 
enhances MC3R function. Future studies should explore further the emerging role of 824 
brain expressed GPCRs in linking central nutritional sensing to reproductive function. 825 

Finally, we provide one of the few examples to date of epistatic interaction between 826 
common and rare genetic variants. Linked to puberty timing by both common and rare 827 
variants, the transcription factor ZNF483 has diverse binding sites across the genome. 828 
We infer that greater ZNF483 binding promotes earlier AAM, whereas rare deleterious 829 
variants in ZNF483 appear to abolish the influence of common genetic influence on 830 
puberty timing. 831 

Together, these insights shed light on mechanisms, including early weight gain and 832 
adiposity, hormone secretion and response, and cellular susceptibility to DNA 833 
damage, that potentially explain the widely reported relationships between earlier 834 
puberty timing and higher risks of later life mortality, metabolic disease, and cancer. 835 

  836 
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 856 

Figure 1 | Age at menarche GWAS and gene prioritisation. (a) Miami plot showing signals from the European meta-analysis for 857 
age at menarche (upper panel) and genome-wide G2G scores with names of the top 50 genes annotated (lower panel). The upper 858 
panel Y-axis is capped at –log10(1x10-150) for visibility. (b) The 50 top scoring genes implicated by G2G, annotated by their sources 859 
of evidence. Relevant data are included in Supplementary Tables 2 and 13-16. 860 
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  861 

Figure 2 | Exome-wide rare (MAF <0.1%) variant associations with age at 862 
menarche. (a) Manhattan plot showing gene burden test results for age at menarche. 863 
Genes passing exome-wide significance (P<1.54´10-6) are highlighted; in addition, 864 
KDM5B shows a sub-threshold association (P=2.6´10-6). Point shapes indicate variant 865 
predicted functional class (DMG, damaging; HC PTV, high confidence protein 866 
truncating). (b) QQ plot for gene burden tests. (c) Comparison of gene burden 867 
associations for age at menarche (female participants, years) and age at voice 868 
breaking (men, 3 categories). Relevant data are included in Supplementary Table 5. 869 
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 870 
Figure 3 | Epistatic interactions between rare coding variants and common 871 
genetic susceptibility on age at menarche in UK Biobank. (a) Interaction effects 872 
(95% CI) on age at menarche between a GWAS polygenic score (PGS) and carriage 873 
of qualifying rare variants in seven exome-highlighted genes. Predicted mean (95% 874 
CI) age at menarche in (b) non-carriers (black) and carriers (light blue) of rare variants 875 
in six genes without significant interaction effects and (c) in non-carriers (left panel) 876 
and carriers (right) of rare variants in ZNF483 which shows significant interaction. In 877 
(c) points show individual age at menarche values. (d) Plot of individual rare damaging 878 
(DMG) variant associations with age at menarche by ZNF483 functional domains. The 879 
coding part of ZNF483 is depicted by the horizontal black line. Included damaging 880 
variants had a minor allele frequency (MAF) <0.1% and were annotated to either be 881 
high-confidence protein truncating variants or missense variants with CADD score 882 
>=25. Relevant data are included in Supplementary Table 12. 883 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.14.23291322doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291322
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 25  
 

 884 

Figure 4 | Stratification of age at menarche signals and biological pathway 885 
enrichments by their influence on early childhood weight. (a) Proportion of GWAS 886 
signals for age at menarche by early childhood weight trajectory. (b) Biological 887 
pathways enriched for high confidence age at menarche genes, plus enrichment within 888 
early childhood weight trajectories. Row names describe pathway clusters. Strength 889 
of associations with individual pathways are indicated by circles. Circle size reflects 890 
the proportion of pathway genes that are high confidence age at menarche genes.  891 
The right-hand panel indicates whether each pathway cluster remains enriched for 892 
age at menarche genes when stratified by early childhood weight trajectory. Extended 893 
data are included in Supplementary Tables 21 and 23-26.894 
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895 
Figure 5 | Enrichment of gene drivers of GnRH migration and maturation in the age at menarche GWAS. (a) Schematic 896 
representation of the stages of GnRH neuron migration during embryonic development. Using RNAseq data, Pitteloud and colleagues 897 
[manuscript in preparation] grouped differentially-expressed genes into 23 expressional trajectories based on their comparative level 898 
of expression during the Early (yellow), Intermediate (amber) and Late (red) stages of GnRH migration. (b) Genome-wide MAGMA 899 
enrichment for age at menarche associations within each expression trajectory. (c) Trajectories significantly enriched at the genome-900 
wide level in (b) show significant overlap with the 660 high-confidence age at menarche genes. Extended data are included in 901 
Supplementary Tables 18 and 27. 902 
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 903 

Figure 6 | Interactions between G protein-coupled receptors (GPCRs) on age at menarche. (a) 24 brain-expressed GPCRs 904 
implicated in age at menarche by G2G analysis of white European GWAS data (b) Time-resolved NDP-αMSH-stimulated cAMP 905 
production in HEK293 cells expressing MC3R-alone or with both MC3R and GPR83. Data are mean (standard error) % of the maximal 906 
MC3R-alone response (from 6 independent experiments). (c) Predicted mean (95% CI) age at menarche according to dosage of 907 
MC3R function-increasing C alleles at rs3746619 (X-axis in each panel) and GPR83 expression-increasing T alleles at rs592068 908 
(panels). Betainteraction= -0.034 ± 0.015 years, Pinteraction=0.02. Extended data are included in Supplementary Tables 28 and 30.909 
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Methods 910 

GWAS meta-analysis for age at menarche 911 

Association summary statistics were collated from studies on age at menarche (AAM, 912 
predominantly recalled in adulthood) and genome-wide SNP arrays imputed to the 913 
1000 Genomes reference panel or more recent (Supplementary Table 1). Genetic 914 
variants and individuals were filtered based on study-specific quality control metrics. 915 
In each study, genetic variants were tested for association with AAM in additive linear 916 
regression models, including as covariates: age and any study-specific variables, such 917 
as genetic principal components. Insertion and deletion polymorphisms were coded 918 
as “I” and “D” to allow harmonization across all studies. Association statistics for each 919 
SNP were then processed centrally using a standardized quality control pipeline69. 920 
Each variant was meta-analysed using a fixed-effects inverse-variance-weighted 921 
model using METAL70. This was done in two stages. First, summary statistics from 922 
studies within each stratum (i. ReproGen consortium studies, ii. reproductive cancer 923 
consortium studies, iii. East Asian studies) were meta-analysed and then filtered to 924 
include only variants present in more than half of the studies within each stratum. 925 
Second, strata-level results were meta-analysed with data from UK Biobank71, using 926 
‘first instance’ data for AAM (field 2714), and 23andMe. Initially we performed a 927 
European-only analysis (N=632,955). This combined file was filtered to include only 928 
variants present in the UK Biobank and at least one other stratum. Variants were also 929 
filtered to include minor allele frequency (MAF) >= 0.1%. We then performed a second 930 
analysis, by adding the data from the East-Asian studies, and followed the same 931 
sample filtering steps and identification of independent signals (described below). 932 

Replication and explained variance  933 

Independent replication of identified signals was performed in data from the Danish 934 
Blood Donors study16 (DBDS). The DBDS includes questionnaire recalled AAM data 935 
on 35,472 European women (“Age when menstruation started?”). Mean age at recall 936 
was 38.4 years (SD=12.9 years) and mean AAM was 13.1 years (SD=1.4 years). 937 
Indirect confirmation of AAM signals was sought by association with age at voice 938 
breaking (AVB) in men in UK Biobank17 (N=191,235 European men - data field 2385) 939 
and the 23andMe study18 (N=55,781 European men). For signals with missing data 940 
for either AVB dataset, we identified proxies using the UK Biobank White European 941 
dataset (within 1Mb of the reported signal and R2>0.6), choosing the variant with the 942 
highest R2 value. Given the smaller sample sizes of these cohorts, we performed a 943 
Binomial sign test for global replication. The variance explained by each lead AAM 944 
signal in the DBDS was calculated using the formula 2×f(1−f)β2a, where f denotes the 945 
variant MAF and βa is the effect estimate in additive models. Overall variance 946 
explained was calculated as the sum of individual variants.  947 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.14.23291322doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291322
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

  
29 

 

 

UK Biobank phenotype preparation 948 

For downstream analyses in UK Biobank, we derived a AAM variable, using data from 949 
field 2714. To maximise sample size, individuals with missing or implausibly early or 950 
late ‘first instance’ AAM (<8 years or >19 years old) were imputed using data from the 951 
next available instance (if plausible). We also derived two binary traits to represent 952 
abnormally early (precocious) and delayed puberty. Early puberty was defined as AAM 953 
<10 years old (N=1,321). Delayed puberty was defined as AAM >15 years old 954 
(N=10,530). For comparison, women reporting AAM at 12 or 13 years were controls 955 
(N=81,950). All data analysis and visualisation were conducted in R (version 4.2.1, 956 
2022-06-23), unless otherwise stated.  957 

Rare variant associations with age at menarche 958 

To identify gene-level rare variant associations with AAM, we performed an exome-959 
wide association study analysis (ExWAS) using whole-exome sequencing (WES) data 960 
on 222,283 UK Biobank women of European genetic-ancestry72. WES data 961 
processing and quality control was performed as described by Gardner et al.30. 962 
Individual gene burden tests were performed by collapsing variants with MAF <0.1% 963 
per gene according to their predicted functional consequence. We defined two 964 
functional categories of rare variants i) high confidence protein truncating variants (HC 965 
PTV) annotated using VEP73 and LOFTEE74 and ii) damaging variants (DMG) 966 
including HC PTVs plus missense variants with CADD score19 ≥25. We analysed a 967 
maximum of 17,885 protein-coding genes, each with at least 10 rare allele carriers in 968 
either of the two variant categories (P<1.54×10-6, 0.05/32,434 tests). Gene burden 969 
association tests were performed using BOLT-LMM75. Validity of the ExWAS analysis 970 
was indicated by the absence of significant association with the synonymous variant 971 
mask (Supplementary Figure 1) and low exome-wide inflation scores (λ-PTV =1.047 972 
and λ-DMG =1.047). Where applicable, protein domains were annotated using 973 
information from UniProt76 and domain-level burden tests were then performed using 974 
linear models. 975 

Rare variant associations with other traits 976 

We assessed the associations of any ExWAS AAM-associated genes in UK Biobank  977 
with a range of related phenotypes: age at natural menopause (based on field 3581), 978 
body mass index (BMI, field 21001), comparative body size age 10 (field 1687), adult 979 
height (field 50), comparative height age 10 (field 1697), and circulating IGF-1 980 
concentrations (field 30770). We considered only the top AAM-associated variant 981 
mask for each gene. We also performed a similar look-up of these genes across a 982 
broader range of phenotypes using the AstraZeneca Portal77.  983 

Rare variants in IHH panel app genes 984 
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We selected high evidence (“green”) genes with an established monoallelic/X-linked 985 
mode of inheritance from the routine clinical investigation Genomics England gene 986 
panel for idiopathic hypogonadotropic hypogonadism (IHH). At the time of the study, 987 
this included four genes, ANOS1, CHD7, FGF8 and WDR11. We performed a look-up 988 
of these genes in the UK Biobank WES data for AAM (N=222,283) and VB 989 
(N=178,625) considering only HC PTVs with MAF <0.1%. We also extracted the 990 
phenotype of individual carriers. As in the ExWAS analysis, normal pubertal timing 991 
was defined in women as AAM between 10-15 years of age1 and in men as AVB at an 992 
“about average age” (UK Biobank data field 2385).  993 

Polygenic score calculation 994 

We calculated a genome-wide polygenic score (PGS) for AAM using lassosum31. To 995 
keep PGS generation independent of PGS testing, we generated the PGS using our 996 
European-ancestry GWAS data excluding UK Biobank. We randomly selected 25,000 997 
unrelated Europeans in UK Biobank to generate the LD (Linkage Disequilibrium) 998 
reference. The resulting PGS was standardised, by subtracting the mean and dividing 999 
by the standard deviation. 1000 

We divided the PGS into 100 centiles, and calculated the mean AAM for each PGS 1001 
centile, as well as PGS centile-specific odds ratios for precocious or delayed AAM (as 1002 
defined above) compared to individuals in the 50th centile of the PGS. We also 1003 
calculated the mean PGS for each completed whole year of AAM.  1004 

We next tested whether carriage of ExWAS AAM-associated rare variants modifies 1005 
the influence of the PGS on AAM. We performed linear models that included 1006 
interaction terms [PGS × rare variant carrier status] in the subsample of unrelated 1007 
white-European UK Biobank women with WES, PGS and AAM data (N=187,941). To 1008 
test for chance effects due to low sample size, we randomly subsampled non-carriers 1009 
to a sample size equivalent to that of carriers and compared this distribution of AAM 1010 
to that observed in carriers.  1011 

A PGS comprising the 882 available lead AAM SNPs or their proxies (out of the 935 1012 
independent AAM signals from the EUR-MA) was computed in 3,140 girls with 1013 
available imputed GWAS data from the ALSPAC study. Linear or logistic regression 1014 
models for continuous AAM, early AAM (-2 SDs, corresponding to <10.38 years), and 1015 
delayed AAM (+2 SDs, corresponding to >14.95 years) were tested, controlling for the 1016 
first 20 genetic PCs. Other models assessed the predictive performance of BMI at age 1017 
8 years, and mother’s AAM; finally a model including all predictors as covariables was 1018 
calculated. The predictive performance of each model was evaluated by the R2 metric 1019 
for continuous AAM and by the area under the receiver operating characteristic curve 1020 
(AUROC) for binary AAM outcomes.   1021 
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GWAS to Genes (G2G) pipeline 1022 

Mapping GWAS signals to genes 1023 

To perform signal selection, GWAS AAM summary statistics were filtered to remove 1024 
variants with MAF <0.1%. The remaining variants were merged with allele information 1025 
from UK Biobank to provide the genomic sequence for any missing alleles. Genome-1026 
wide significant signals (P<5x10-8) were selected initially based on proximity (in 1Mb 1027 
windows). Secondary signals within these windows were then identified using 1028 
approximate conditional analysis (GCTA78), using an LD reference panel derived from 1029 
25,000 randomly selected UK Biobank participants. Secondary signals were defined 1030 
as uncorrelated (R2<0.05) with another signal and without an overt change in their 1031 
AAM association between baseline and conditional models (change in beta <20% or 1032 
change in P-value by less than four orders of magnitude). Primary and secondary AAM 1033 
signals were further checked for pairwise LD within 10 Mb windows using plink 1034 
(v1.90b6.18)79 and only independent signals (R2<0.05) were retained, prioritising 1035 
distance-based signals in the case of linkage. Signal selection was performed first 1036 
using the European-ancestry GWAS meta-analysis, and then supplemented by any 1037 
signals identified by the All-ancestry GWAS meta-analysis that were uncorrelated 1038 
(R2<0.05) with any European-ancestry signal. 1039 

Independent GWAS AAM signals were examined for proximal genes, defined as those 1040 
within 500kb up- or downstream of the genes start or end sites, using the NCBI RefSeq 1041 
gene map for GRCh37 (via 1042 
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/).  1043 

Colocalization with expression or protein QTL data 1044 

Tissue enrichment for GWAS associations was performed using LD score regression 1045 
applied to tissue-specific expression (LDSC-SEG)80 and tissue-specific annotations 1046 
from GTEx, accessed via https://github.com/bulik/ldsc/wiki/Cell-type-specific-1047 
analyses. Significantly enriched tissues (P<0.05) were then included in colocalization 1048 
analyses with the tissue-specific and cross-tissue meta-analysed GTEx eQTL data 1049 
(V760, available via https://gtexportal.org and using the fixed-effects summary statistics 1050 
for the latter), in addition to data from the eQTLGen81 and Brain-eMeta59 studies. 1051 

Including genomic variants with at least suggestive association with AAM (GWAS 1052 
P<5x10-5), we applied Summary data-based Mendelian Randomization and 1053 
Heterogeneity in Independent Instruments (SMR-HEIDI, version 0.6882) and the 1054 
Approximate Bayes Factor (ABF) method in the R package “coloc” (version 5.1.083). 1055 
For the former, we considered gene expression to be influenced by the same GWAS 1056 
AAM variant if the FDR-corrected SMR test P<0.05 and HEIDI test P>0.001. For the 1057 
latter, genomic regions were defined as ±500 kb around each gene and loci exhibiting 1058 
a H4 posterior probability >0.75 were considered to show evidence of colocalization. 1059 
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We also tested for colocalization between GWAS AAM variants and pQTLs using data 1060 
from the Fenland study84 and using the same procedure as above. It is important to 1061 
note that colocalization analysis cannot determine causal relationships or the direction 1062 
of causality between the two phenotypes. 1063 

Mapping GWAS signals to enhancers and coding variants 1064 

For genes proximal to (within 500 kb) GWAS AAM signals, we calculated genomic 1065 
windows of high LD (R2>0.80) around each signal and mapped these to the locations 1066 
of known enhancers for the genes, using activity-by-contact (ABC) enhancer maps34. 1067 
This was done across the 131 available cell/tissue types and genes were matched to 1068 
enhancers only in the tissues/cells where they were actively expressed. 1069 

We also checked whether GWAS AAM signals were in LD (R2>0.80) with any coding 1070 
variants within the paired genes and what the predicted consequence of those coding 1071 
variants, using SIFT85 and POLYPHEN86. 1072 

Gene-level GWAS associations with AAM 1073 

We performed a gene-level MAGMA analysis35, which collapses common GWAS 1074 
variants within each gene and calculates aggregate gene-level associations with the 1075 
outcome trait, as described by de Leeuw et al.35. To enhance validity of this approach, 1076 
we restricted the analysis to include only coding variants. Genes with FDR-corrected 1077 
MAGMA P<0.05 were considered associated with AAM.  1078 

Finally, we used the Polygenic Priority Score (PoPS36), which is a similarity-based 1079 
gene prioritisation method and uses cell-type specific gene expression, biological 1080 
pathways, and protein-protein interactions to prioritise likely causal genes from GWAS 1081 
data. At each locus, the gene with the numerically highest PoPS score was determine 1082 
to be the PoPS-prioritised gene. 1083 

Calculation of G2G scores 1084 

From the above analyses, gene-level results were scored for each of the six sources 1085 
as follows: 1086 

1. Closest gene. Gene proximity to a GWAS signal is a good predictor of causality37. 1087 
The genes closest to each AAM signal (if also within 500 kb) were assigned. All 1088 
genes with an intragenic signal were assigned as closest. Closest genes were 1089 
scored 1.5 points.  1090 

2. eQTL colocalisation. Genes with evidence of eQTL colocalisation via both SMR-1091 
HEIDI and coloc were scored 1.5 points. Genes with evidence of colocalisation via 1092 
only one of these received 1.0 point. A further (1.0) point was assigned to genes if 1093 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.14.23291322doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291322
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

  
33 

 

 

the most likely shared causal variant between eQTL and GWAS AAM was 1094 
independent of the proximal GWAS signal (R2<0.05).  1095 

3. pQTL colocalisation. The same scoring as in (2) was applied to pQTL analyses. 1096 
4. Coding variants. As the evidence was overlapping for coding variant gene-level 1097 

MAGMA analysis and signals correlated with coding variants, these analyses were 1098 
scored concomitantly. Genes with an FDR-corrected MAGMA P<0.05 were scored 1099 
0.5 points. Genes containing coding variants of deleterious or damaging predicted 1100 
consequence in LD with GWAS AAM signals were scored 1.0 point, or only 0.5 1101 
points if the coding variants were predicted to be benign or tolerated. 1102 

5. ABC enhancers. Genes targeted by enhancers which overlapped with or were 1103 
correlated with GWAS AAM signals were scored 1.0 point. 1104 

6. PoPS. PoPs prioritised genes at each locus were scored 1.5 points. 1105 

G2G scores for each gene-signal pair were calculated as the sum of scores from these 1106 
six sources. Genes that scored >0 points and were located within 500 kb of a GWAS 1107 
AAM signal were considered further. To account for confounding due to large LD 1108 
blocks, G2G scores were adjusted for signal LD window size (defined as the genomic 1109 
distance containing variants with pairwise R2>0.50 with the lead SNP) using linear 1110 
regression models.  1111 

For genes proximal to more than one GWAS AAM signal (and hence with multiple 1112 
G2G scores), the signal with the most concordant sources for that gene (highest 1113 
residual G2G score) was retained and a further (1.0) point was added to reflect 1114 
evidence from multiple signals. This resulted in a unique summarised G2G score for 1115 
each included gene. To account for confounding due to gene size, G2G scores were 1116 
further adjusted for gene length using linear regression models. The resulting residuals 1117 
were considered to be the final G2G scores. 1118 

To prioritise likely causal AAM genes, all G2G scored genes (i.e., highlighted as 1119 
potentially causal by at least one source) were ranked and also allocated a G2G centile 1120 
position. In addition, the number of concordant predictors (sources) for each gene 1121 
were noted (range: 1 to 6 sources). Finally, to reflect uncertainty due to multiple high 1122 
scoring genes for the same signal, genes were flagged if they were proximal (within 1 1123 
Mb) to other genes with a similar G2G score (within 0.5 points or greater, and 1124 
highlighted by at least the same number of sources). 1125 

High-confidence AAM genes 1126 

Independent GWAS signals from the All- and the European-ancestry meta-analyses 1127 
were annotated with their top G2G scoring gene, using corresponding GWAS data 1128 
(i.e., European analysis signals were annotated with genes from the European G2G, 1129 
etc.). Genes implicated by at least two concordant sources were considered to be 1130 
high-confidence AAM genes. 1131 
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High-confidence AAM genes were functionally annotated using STRING87. Links to 1132 
rare monogenic disorders were annotated from the Online Mendelian Inheritance in 1133 
Man (OMIM) database (via Online Mendelian Inheritance in Man, OMIM®. McKusick-1134 
Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), 1135 
accesed November 2022. World Wide Web URL: https://omim.org/). Finally, we used 1136 
GTEx, a publicly available resource of tissue-specific gene expression, to lookup the 1137 
tissue expression of 1080 AAM genes highlighted by G2G60. 1138 

ZNF483 genome-wide binding analysis 1139 

We used fGWAS (v.0.3.632), a hierarchical model for joint analysis of GWAS and 1140 
genomic annotations, to test for enrichment of GWAS AAM signals among ZNF483 1141 
transcription factor binding sites. fGWAS models a maximum likelihood parameter 1142 
estimate for enrichment of a transcription factor (in this case ZNF483). To perform this, 1143 
we annotated the European-ancestry GWAS AAM summary statistics with the ZNF483 1144 
binding sites from the ENCODE ChIP-seq data derived from human HepG2 cell line 1145 
(ENCSR436PIH).  1146 

We also used Signed LD Profile regression (SLDP, https://github.com/yakirr/sldp, 1147 
Reshef et al. 33) to explore the directional effect of ZNF483 function on AAM. We tested 1148 
whether alleles that are predicted to increase the binding of ZNF483 have a combined 1149 
tendency to increase or decrease AAM. SLDP requires signed LD profiles for ZNF483 1150 
binding, a signed background model and reference panel in a SLDP compatible 1151 
format. We used a 1000 Genomes Phase 3 European reference panel containing 1152 
approximately 10M SNPs and 500 individuals. 1153 

Clustering of AAM signals by early childhood body weight 1154 

We analysed repeated measurements of early childhood body weight from the MoBa 1155 
cohort study52,88 to investigate the relationship between early growth and puberty 1156 
timing. Childhood body weight values were extracted from the study questionnaires 1157 
for 12 different time-points from birth to age 8 years using previously reported 1158 
exclusion criteria52. Weight values were standardized and adjusted for sex and 1159 
gestational age using the generalized additive model for location, scale and shape 1160 
(GAMLSS; v5.1-7, via www.gamlss.com) in R (v3.6.1) as previously reported52 with 1161 
the exception that a Box-Cox t distribution was used to standardize body weight values 1162 
(instead of the log-normal distribution used for BMI)52. GWAS for these traits was 1163 
performed using BOLT-LMM (v2.3.4) as previously reported52. 1164 

We performed Mendelian randomisation (MR) analyses to assess the likely causal 1165 
effects of AAM on childhood weight at each time-point89. As instrumental variables 1166 
(IVs), we used all 1080 AAM-associated lead SNPs individually. As outcome data, we 1167 
used childhood weight at the 12 time-points. For SNPs with missing outcome data, we 1168 
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identified proxies within 1 Mb and R2>0.6, choosing the variant with the highest R2 1169 
value, using a random selection of 25,000 unrelated European-ancestry UK Biobank 1170 
individuals for the LD reference. Genotypes at all variants were aligned to the AAM-1171 
increasing allele. We used inverse-variance weighted (IVW) MR models, as this has 1172 
the greatest statistical power90. 1173 

Next, we stratified the 1080 AAM lead SNPs by their effects on early childhood weight 1174 
used a k-means clustering approach for longitudinal data91. We performed five 1175 
different models with k-means for k∈{2,3,4,5,6} clusters 20 times each. To find the 1176 
optimal partition, we used the “nearlyAll” option which uses several different 1177 
initialisation methods in alternation. As the assumption of homoscedasticity was not 1178 
met, we used the Carolinski-Harabatz criterion, a non-parametric quality criterion, to 1179 
derive the optimal number of clusters.  1180 

We then performed additional MR analyses, combining AAM signals within each 1181 
identified cluster as IVs and, as the outcomes, childhood weight at each time-point 1182 
and also adult BMI (on N=450,706 UK Biobank participants). We grouped together 1183 
‘high early weight’ and ‘moderate early weight’ AAM SNPs into a single IV to maximise 1184 
power. 1185 

Biological pathway enrichment analysis 1186 

We performed gene-centric biological pathway enrichment analysis using g:Profiler 1187 
(via the R client “gprofiler2”, version 0.2.153). We used a filtered set of GO pathways 1188 
(accessed on the 21/02/2023), focusing on GO:BP, KEGG and REACTOME, and 1189 
restricted the analysis to those pathways with 1000 genes or fewer, reasoning that 1190 
these are more biologically specific. Pathway enrichment analyses were performed 1191 
using the set of 660 high-confidence AAM genes, and repeated when stratified by their 1192 
effects on early childhood weight (see above). Pathways with Bonferroni corrected 1193 
P<0.05 were considered to be associated with AAM.  1194 

As the pathways derived from overlapping sources, we clustered the AAM-associated 1195 
pathways to aid interpretation. Clustering was based on shared AAM genes across 1196 
pathways. We used a “complete” clustering algorithm and a custom distance 1197 
calculated as [one minus the proportion of the overlap between any two pathways 1198 
relative to the pathway with the smaller overlap]. Thus, between two pathways a value 1199 
of 0 indicates that all the shared AAM genes in the pathway with fewer genes are also 1200 
enriched in the other pathway. To define clusters, we chose an arbitrary overlap value 1201 
of 0.5, which indicates that pathways in the same cluster share 50% or more of their 1202 
AAM genes.  1203 
Each pathway cluster was annotated by i) the pathway with the most significant 1204 
enrichment, ii) the pathway with the highest proportion of AAM genes, iii) biological 1205 
coherence of the pathways, and iv) shared genes common to all included pathways. 1206 
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We considered that pathways were overlapping between the total AAM gene set and 1207 
the two early-weight subgroups if there were common pathways across either i) the 1208 
most significant pathway or ii) the pathway with the highest proportion of AAM-1209 
associated genes. 1210 

Expression of AAM genes in GnRH neurons 1211 

We tested for enrichment of AAM-associated genes in RNAseq data from embryonic 1212 
GnRH mouse neurons [manuscript in preparation]. All expressed genes were sorted 1213 
into different expressional trajectories, based on shared dynamic expression profiles 1214 
across three developmental stages (early, intermediate or late), as described by 1215 
Pitteloud et al. [manuscript in preparation]. We tested for enrichment of AAM-1216 
associated genes (from our European-ancestry GWAS meta-analysis) in any identified 1217 
trajectory, using MAGMA35 with custom pathways. As a sensitivity test, we used 1218 
Fisher’s Exact test to confirm over-representation of AAM-associated genes within 1219 
each trajectory. 1220 

Colocalization of AAM signals with BMI and menopause 1221 

To explore the shared genetic architecture between AAM, age at natural menopause 1222 
(ANM) and adult BMI, we performed a colocalization analysis for each of the 1080 1223 
AAM signals. ANM GWAS summary statistics were from reported ReproGen data on 1224 
~250,000 women of European ancestry62. Adult BMI GWAS summary statistics were 1225 
derived from 450,706 individuals in UK Biobank. For AAM signals with missing 1226 
outcome GWAS data, we identified proxies within 1 Mb and with an R2>0.6 using our 1227 
25,000 participant UK Biobank LD reference. We applied both Bonferroni correction 1228 
(P≤0.05/1080=4.6×10-5) for association with the outcome trait, and a posterior 1229 
probability (PP) of colocalization PP>0.5. 1230 

The same approach was applied in the opposite direction, by testing ANM signals 1231 
identified in the most recent ReproGen GWAS62 for association with AAM. ANM 1232 
signals were highlighted if they passed Bonferroni correction (P≤0.05/290=1.7×10-4) 1233 
for association with AAM. As ANM signals are well-established to be enriched for DNA 1234 
damage repair genes (DDR), we built a comprehensive list of DDR genes, integrating 1235 
five different sources: i) an expert curated DDR gene list (“Broad DDR”) from the 1236 
laboratory of Professor Stephen Jackson, this list encompasses a range of related 1237 
pathways: DNA repair genes, broader DNA damage response genes (such as 1238 
damage-induced chromatin remodelling, transcription regulation or cell cycle 1239 
checkpoint induction); and general maintenance of genome stability (such as genes 1240 
involved in DNA replication); ii) a second expert curated list previously reported62, 1241 
assembled by John Perry, Eva Hoffmann and Anna Murray; iii) genes listed in the 1242 
REACTOME92 “DNA Repair” pathway (R-HSA-73894); iv) genes listed in the Gene 1243 
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Ontology “DNA Repair” pathway (GO:0006281); and v) genes listed in the Gene 1244 
Ontology93 “Cellular response to DNA damage stimulus” (GO:0006974). 1245 

GPR83-MC3R interaction 1246 

Brain expressed GPCRs 1247 

We tested whether any brain-expressed G-protein coupled receptors (GPCRs) were 1248 
implicated by GWAS AAM associations (G2G gene scores). We tested a curated list 1249 
of brain-expressed GPCRs (Stephen O’Rahilly, personal communication): ACKR1, 1250 
ACKR2, ACKR3, ACKR4, ADRB1, ADRB2, ADRB3, AGTR1, AGTR2, BRS3, C5AR1, 1251 
C5AR2, CALCR, CASR, CCKAR, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, 1252 
CCR6, CCR7, CCR9, CCRL2, CNR1, CNR2, CXCR1, CXCR2, CXCR3, CXCR4, 1253 
CXCR6, DRD1, DRD2, DRD3, DRD4, DRD5, EDNRA, EDNRB, FFAR1, FFAR2, 1254 
FFAR3, FFAR4, FPR1, FPR2, FPR3, FSHR, GALR1, GALR2, GALR3, GHRHR, 1255 
GHSR, GIPR, GLP1R, GLP2R, GNRHR, GPER1, GPR1, GPR12, GPR15, GPR17, 1256 
GPR18, GPR19, GPR20, GPR22, GPR25, GPR26, GPR27, GPR3, GPR34, GPR35, 1257 
GPR37, GPR39, GPR4, GPR42, GPR45, GPR52, GPR55, GPR6, GPR61, GPR62, 1258 
GPR63, GPR75, GPR78, GPR82, GPR83, GPR84, GPR85, GPR87, GPR88, GRM1, 1259 
GRM2, GRM3, GRM4, GRM5, GRM6, GRM7, GRM8, GRPR, HCAR1, HCAR2, 1260 
HCAR3, HRH1, HRH2, HRH3, HRH4, LGR4, LGR5, LGR6, LPAR1, LPAR2, LPAR3, 1261 
LPAR4, LPAR5, LPAR6, MC3R, MC4R, MC5R, MCHR1, MCHR2, NMBR, NMUR1, 1262 
NMUR2, NPSR1, NPY1R, NPY2R, NPY4R, NPY5R, NPY6R, OXER1, OXGR1, 1263 
P2RY1, P2RY2, P2RY4, P2RY6, P2RY8, PRLHR, PTAFR, PTH1R, PTH2R, QRFPR, 1264 
RGR, RXFP1, RXFP2, S1PR1, S1PR2, S1PR3, S1PR4, S1PR5, SCTR, SSR1, SSR2, 1265 
SSR3, SSR4, TSHR, VIPR1, VIPR2, VN1R1, VN1R2, VN1R5 and XCR1. For any 1266 
GPCR scored by our G2G AAM pipeline, colocalisation was tested between GWAS 1267 
signals for AAM and adult BMI (colocalisation methods as described above).  1268 

Cell culture and transfection 1269 

To investigate the effect of GPR83 of MC3R signalling, we performed in vitro assays 1270 
in transiently transfected HEK293 cells maintained in Dulbecco’s modified eagle 1271 
medium (high glucose DMEM, GIBCO, 41965) supplemented with 10% fetal bovine 1272 
serum (GIBCO, 10270), 1% GlutaMAXTM (100X) (GIBCO, 35050), and 100 units/mL 1273 
penicillin and 100 mg/mL streptomycin (Sigma-Aldrich, P0781). Cells were incubated 1274 
at 37°C in humidified air containing 5% CO2 and transfections were performed using 1275 
Lipofectamine 2000 (GIBCO, 11668) in serum-free Opti-MEM I medium (GIBCO, 1276 
31985), according to the manufacturer’s protocols. The plasmids used encode the C-1277 
FLAG-tagged human GPR83 WT (NM_016540.4) or N-FLAG-tagged human MC3R 1278 
WT (NM_019888.3) ligated into pcDNA3.1(+) (Invitrogen). 1279 

Bioluminescence Resonance Energy Transfer (BRET) to measure dimerization 1280 
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Heterodimerization between GPR83 and MC3R was quantified using BRET1 in 1281 
titration configuration. Briefly, 12,000 HEK293 cells seeded in 96-well plates were 1282 
transfected with a constant dose of MC3R-RlucII plasmid (0.5 ng/well) and increasing 1283 
doses of GPR83-Venus plasmids, or soluble (s) Venus as negative control. All 1284 
conditions were topped up with empty vector (pcDNA3.1 (+)) to a total of 100 ng 1285 
plasmid/well. Twenty-four hours post transfection, cells were washed once with 1286 
Thyrode’s buffer and total Venus fluorescence was measured in a Spark 10M 1287 
Microplate reader (Tecan) using monochromators (excitation 485 ± 20 nm, emission 1288 
535 ± 20 nm). BRET was quantified 10 minutes after the addition of coelenterazine H 1289 
(NanoLight Technology, 2.5 mM). netBRET was calculated as [(absorbance at 533 ± 1290 
25 nm/absorbance at 480 ± 40 nm)] – [background (absorbance at 533 ± 25 1291 
nm/absorbance at 480 ± 40 nm)], with the background corresponding to the signal in 1292 
cells expressing the RlucII protomer alone under similar conditions. Data on the X-axis 1293 
represent the ratio between acceptor (Venus) fluorescence and donor (RlucII) 1294 
luminescence. Representative data are from four independent experiments. 1295 

Time-resolved cAMP assay 1296 

Measurement of ligand-induced cAMP generation in HEK293 cells transiently 1297 
expressing either MC3R or both MC3R and GPR83 was performed using GloSensorTM 1298 
cAMP biosensor (Promega), according to manufacturer’s protocol. Briefly, 12,000 1299 
cells were seeded in white 96-well poly-D-lysine-coated plates. After 24 hours, cells 1300 
were transfected with both 100 ng/well of pGloSensorTM-20F cAMP plasmid 1301 
(Promega, E1171) and 30 ng/well of each plasmid encoding either MC3R or MC3R 1302 
and GPR83, using Lipofectamine 2000 (GIBCO, 11668). All conditions were topped 1303 
up with empty vector (pcDNA3.1 (+)) to a total of 160 ng plasmid/well. The day after 1304 
transfection, cell media were replaced by 90 mL of fresh DMEM with 2% v/v 1305 
GloSensorTM cAMP Reagent (Promega, E1290) and incubated for 120 min at 37°C. 1306 
Firefly luciferase activity was measured at 37°C and 5% CO2 using a Spark 10M 1307 
microplate reader (Tecan). After initial measurement of the baseline signal for 10 min 1308 
(30 seconds intervals), cells were stimulated with 10 mL of 10x stock solution of the 1309 
MC3R agonist NDP-aMSH (final concentration 1 mM) and real-time chemiluminescent 1310 
signals were quantified for 25 minutes (30 seconds intervals). In each experiment, a 1311 
negative control using mock transfected cells (empty pcDNA3.1(+) plasmid) was 1312 
assayed. The area under the curve (AUC) was calculated for each cAMP production 1313 
curve considering total peak area above the baseline calculated as the average signal 1314 
for mock pcDNA3.1(+)-transfected cells. For data normalization, the AUC from mock 1315 
transfected cells was set as 0 and the AUC from WT MC3R was set as 100%. Results 1316 
are from six independent experiments.  1317 

Genetic epistasis between GPR83 and MC3R  1318 

To corroborate the in vitro interaction, we tested for evidence of a specific epistatic 1319 
interaction between AAM GWAS signals at GPR83 (rs592068-C) and MC3R 1320 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.14.23291322doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291322
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

  
39 

 

 

(rs3746619-A). We extracted genotypes for these SNPs in white-European unrelated 1321 
UK Biobank women (N=204,303). After adjusting AAM for standard covariates (GWAS 1322 
chip, age, sex, PC1-10), we modelled the interaction between genotype dosages at 1323 
the two signals using a linear model. 1324 

 1325 
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